

Quantum Blockchains Inc. , Lipowa 4a, 20-027 Lublin, Poland. https://quantumblockchains.io/

vǳŀƴǘǳƳ .ƭƻŎƪŎƘŀƛƴΩǎ αvY5.ŀǎŜέ ς the first QKD and QRNG based

quantum blockchain model completed

Summary

In this communication we report on the completion of the second phase of the development of the

technology that bridges domains of blockchain and of quantum cryptography. Theoretical base of this

work was first proposed in a number of publications from the founders of Quantum Blockchains

ǎǘŀǊǘǳǇ ŎƻƳǇŀƴȅΦ ¢ƘŜ Ƴƻǎǘ ƛƳǇƻǊǘŀƴǘ ŀƳƻƴƎ ǘƘŜƳ ƛǎ α¢ƻǿŀǊŘǎ vǳŀƴǘǳƳ-Secured Permissioned

BlockchainΥ {ƛƎƴŀǘǳǊŜΣ /ƻƴǎŜƴǎǳǎΣ ŀƴŘ [ƻƎƛŎέ ǿƻǊƪ ǇǳōƭƛǎƘŜŘ ƛƴ {ŜǇǘŜƳōŜǊ нлмф1, where we have

described, in purely theoretical terms, the possible algorithms for securitization, consensus and logical

smart-contracts which could form a blockchain secured from the threats of emerging quantum

computers. Then, during incubation of our startup, we have built an MVP class solution where

quantum-secured links were simulated by classical channels (HTTP connections using classical TCP/IP

network)2.

Since our startup obtained its first funding3 in October 2021, we started evolving our MVP code base

into the model that can use real, commercially available QKD devices. As the QKD devices are very

expensive and run on expensive infrastructure, we entered into partnership with one of the suppliers

ƻŦ ǘƘŜ ǘŜŎƘƴƻƭƻƎȅΣ vb¦ [ŀōǎΣ ŀƴŘ ǎŜŎǳǊŜŘ ŀ ŘŜŘƛŎŀǘŜŘ ǇŀƛǊ ƻŦ vb¦ [ŀōǎΩ !ǊƳƻs QKD system for our

disposal. To avoid the infrastructure creation costs, the pair was installed for us in QNU Labs laboratory

in Bangalore, India, and the communication was provided by installing classically secured (by an SSL

layer on top of HTTP protocol) proxy servers. Two such servers for the fictional cryptographic couple

ά!ƭƛŎŜέ ŀƴŘ ά.ƻōέ ƘŀǾŜ ōŜŜƴ ƳŀŘŜ ŀǾŀƛƭŀōƭŜ Ǿƛŀ 9¢{L лмп vY5 ǇǊƻǘƻŎƻƭ4. The long-term tests using

QNU labs Armos devices (more than 4 months) enabled us to replace the simulated quantum

communication by the QKD real devices in a transparent remote mode.

At the very end of the development period we also were able to access a pair of ID Quantique devices

ƳŀŘŜ ŀǾŀƛƭŀōƭŜ ŦƻǊ ǳǎ ŀǘ t{b/ όtƻȊƴŀƵ {ǳǇŜǊŎƻƳǇǳǘŜǊ ŀƴŘ bŜǘǿƻǊƪƛƴƎ /ŜƴǘŜǊύΦ hƴŜ ƻŦ ǘƘŜ vY5 ƭƛƴƪǎ

between a pair of the nodes of our blockchain was set up to use that link via VPN secured access to

PSNC resources. However as the number of rounds involving these links was too low, we could not

treat these tests as definitive.

The second type of quantum device we used is QRNG ς Quantum Random Number Generator. We

used ID Quantique Quantis QRNG and the software layer (REST Web API) developed by our company5.

1 https://doi.org/10.3390/e21090887
2 https://www.quantumblockchains.io/mvp/
3 Grant of the Polish Agency for Enterprise Development - POPW.01.01.02-06-лломκнм αOpracowanie i
ǿŘǊƻȍŜƴƛŜ ǊȅƴƪƻǿŜ ƛƴƴƻǿŀŎȅƧƴȅŎƘ ǇǊƻŘǳƪǘƽǿ ƛ ǳǎƱǳƎ Ȋ ȊŀƪǊŜǎǳ ƪǊȅǇǘƻƎǊŀŦƛƛ ƪǿŀƴǘƻǿŜƧ ȊǿƛŊȊŀƴȅŎƘ Ȋ ƪƻƴŎŜǇŎƧŊ
YǿŀƴǘƻǿŜƎƻ ǎȅǎǘŜƳǳ .ƭƻŎƪŎƘŀƛƴέ
4 https://www.etsi.org/committee/1430-qkd
5 https://www.quantumblockchains.io/current-services/qrng-numeric/

https://quantumblockchains.io/
https://doi.org/10.3390/e21090887
https://www.quantumblockchains.io/mvp/
https://www.etsi.org/committee/1430-qkd
https://www.quantumblockchains.io/current-services/qrng-numeric/

Quantum Blockchains Inc. , Lipowa 4a, 20-027 Lublin, Poland. https://quantumblockchains.io/

This communication describes the conceptual framework and the implementation of our system

which represents the first real blockchain model running on the real, commercially available QKD

devices.

Conceptual framework

QKDBase is based on the our previous theoretical model described in ά¢ƻǿŀǊŘǎ vǳŀƴǘǳƳ-Secured

tŜǊƳƛǎǎƛƻƴŜŘ .ƭƻŎƪŎƘŀƛƴΥ {ƛƎƴŀǘǳǊŜΣ /ƻƴǎŜƴǎǳǎΣ ŀƴŘ [ƻƎƛŎέ scientific paper.

The most important elements of the QKDBase conceptual framework are:

1) Blockchain security:

a. Toeplitz Hash Message Authentication Code

b. Toeplitz Group Signature

2) Consensus algorithm:

a. The QSYAC Protocol

All these elements are clearly described in the aforementioned paper.

From theoretical formulation to the design of the code

In more software developmental/algorithmic language we can describe the consensus protocol

implementation in the following way:

ü A transaction (an object serialized to JSON string representation) is sent by the client to all

peers.

ü The proposing peer establishes a Toeplitz matrix with all neighboring peers (QKD is used).

ü The proposing peer establishes an One-Time-Pad as a random binary string with all

neighboring peers (QKD is used).

ü The proposing peer generates the Toeplitz Group Signature.

An example:

ü The Toeplitz matrix is generated by generating a random binary string with 69 digits

(representing the first row and first column) and populating diagonal values with the same

values.

ü The One-Time Pad is a random binary string with 35 digits.

ü A simple transaction data of N characters is prepared which are then parsed to a binary

string using UTF8.

ü Toeplitz hash is calculated by multiplying Toeplitz matrix with transaction data. Then the

result is used for modulo 2 calculation. The last step is calculating bitwise XOR between

modulo result and the OTP.

ü Toeplitz Group Signature is an array containing all calculated Toeplitz hashes, one for each

connection between proposing peer and neighboring ones (in our scenario we have 3

Toeplitz hashes).

ü The proposing peer generates Toeplitz hash for itself and adds it to the Toeplitz Group

{ƛƎƴŀǘǳǊŜΦ ²ƛǘƘƻǳǘ ƛǘΣ ǘƘŜ ǇǊƻǇƻǎŀƭ ǇŜŜǊ ǿƻǳƭŘƴΩǘ ōŜ ŀōƭŜ ǘƻ ǾƻǘŜ ōŜŎŀǳǎŜ ƛǘ ǿƻǳƭŘƴΩǘ ƘŀǾŜ

data to hash the transaction and send it with a vote request.

https://quantumblockchains.io/

Quantum Blockchains Inc. , Lipowa 4a, 20-027 Lublin, Poland. https://quantumblockchains.io/

ü The proposing peer creates a proposal block and sends it to all neighboring peers together

with Toeplitz Group Signature (classical channel).

After receiving the proposal block the other peers do:

ü Verify if Toeplitz Group Signature is correct: calculate Toeplitz hash using Toeplitz matrix,

block proposal data and the OTP established before with proposing peer and check if

Toeplitz Group Signature has the same hash as calculated Toeplitz hash.

ü If Toeplitz Group Signature is correct they store block proposal.

ü If Toeplitz Group Signature is correct they store Toeplitz Group Signature

ü If Toeplitz Group Signature is correct they hash transaction (node hash + transaction +

calculated Toeplitz hash) and store it (classical mode).

ü Each peer generates a random array of all peers and sends a request to vote to the first one

together with a hashed transaction (classical mode).

When peers get a request to vote they:

ü Wait for the block proposal and Toeplitz Group Signature

ü Hash transaction for each neighboring peer using transaction from block proposal, node

hash and Toeplitz Group Signature.

ü Check if the calculated hashed transaction is the same as one received from a voting

request.

ü If hashes are the same, they send to all peers request to increase their vote number by 1.

ü If the number of the votes is equal or bigger than 12 (together with one just added), they

send to all peers that they should add a proposal block to the blockchain (classical channel).

ü If the number of the votes is less than 12 (together with one just added), they send a request

to the next peer in the queue to vote together with a hashed transaction (classical channel).

ü After adding the block to blockchain each peer clears Toeplitz Group Signature array, the

One-Time Pads, transaction hash, block proposal and votes number.

Establishment of the Toeplitz value and one-time pad follows:

ü The first peer sends a request to check if the second peer has Toeplitz value/one-time pad

with the node hash of the first peer

ü If yes, the first peer checks if it also has the same Toeplitz value/one-time pad and if

everything is correct, the establishment is finished.

ü LŦ ǘƘŜ ǎŜŎƻƴŘ ǇŜŜǊ ŘƻŜǎƴΩǘ ƘŀǾŜ ŎƻǊǊŜǎǇƻƴŘƛƴƎ ¢ƻŜǇƭƛǘȊ ǾŀƭǳŜκƻƴŜ-time pad the first peer

generates Toeplitz value/one-time pad and sends it to the second peer

The implementation

QKDBase was implemented using NodeJS programming and execution environment, and TypeScript,

which is a syntactical superscript of JavaScript. The deployment was done using Docker platform-as-

a-service virtualization software. Standard deployment mechanisms, where QKDBase nodes were run

on separated machines were also tested.

Transaction processing was initiated by Python scripts which invoked HTTP calls to send the

transaction to the selected blockchain node.

https://quantumblockchains.io/

Quantum Blockchains Inc. , Lipowa 4a, 20-027 Lublin, Poland. https://quantumblockchains.io/

Relation of the implementation to the conceptual/theoretical framework

During the implementation of the QKDBase quantum blockchain we had to make some adjustments

ŀƴŘ ƳƻŘƛŦƛŎŀǘƛƻƴ ǘƻ ǘƘŜ ƻǊƛƎƛƴŀƭ ŘŜǎƛƎƴ ŘŜǎŎǊƛōŜŘ ƛƴ ǘƘŜ άŎƻƴŎŜǇǘǳŀƭ ŦǊŀƳŜǿƻǊƪέ ǎŜŎǘƛƻƴ ŀōƻǾŜΦ

To illustrate the final flow in the actually implemented blockchain, we present the flowchart of the

main operations:

¶ Transaction proposal

¶ Consensus mechanism (voting)

The transaction proposal

https://quantumblockchains.io/

Quantum Blockchains Inc. , Lipowa 4a, 20-027 Lublin, Poland. https://quantumblockchains.io/

Voting (achieving consensus)

The QKDBase architecture

QKDBase uses hybercube network 2nd order topology with 4 nodes. In the future we will use other

dimensions of the hypercube networks for the quantum blockchain.

The current architecture is depicted in the following diagram:

QKD Links are depicted in blue, classical links are depicted in red.

As we had access to lower number of physical QKD links than logical node-to-node links, we have

used multiplexing technique, where a single physical link was used for many logical links.

https://quantumblockchains.io/

Quantum Blockchains Inc. , Lipowa 4a, 20-027 Lublin, Poland. https://quantumblockchains.io/

Also, we have used two types of distribution of the nodes in our lab: physical (two bare-metal

servers with two nodes each) and simulated (four independent Docker containers on a single bare-

metal server)

The physical QKD links used by QKDBase

The majority of QKDBase runs were performed using QNU Labs ARMOS QNLX 210 QKD pair of devices6

connected by 60km of the fiber (SMF-28e) setup in Bangalore, India (see Appendix A for more data

about the Armos QKD devices).

The remote access was provided by two proxy servers that were delivering ETSI 014 protocol (see

below) payload over encrypted public Internet connections and authenticated through standard PKI

certificates.

In some of the tests, we have used ID Quantique Clavis3 QKD platform7 ς the pair of devices was set

up iƴǎƛŘŜ t{b/ [ŀō ƛƴ tƻȊƴŀƵΣ tƻƭŀƴŘΦ ¢ƘŜ ŀŎŎŜǎǎ ǘƻ ǘƘŜǎŜ ŘŜǾƛŎŜǎ ǿŀǎ ǇǊƻǾƛŘŜŘ ǘƻ ǳǎ Ǿƛŀ ƘƛƎƘƭȅ

secured VPN connection. We then used them using ETSI 014 protocol. See Appendix B for more

information about the devices.

However, while the ID Quantique devices worked properly with our blockchain, the number of tests

was far too low for the inclusion of the results into our report.

The ETSI protocol

To communicate with QKD devices we have used ETSI protocol described in ETSI Group Specification:

άvǳŀƴǘǳƳ YŜȅ 5ƛǎtribution (QKD) - Protocol and data format of REST-ōŀǎŜŘ ƪŜȅ ŘŜƭƛǾŜǊȅ !tLέ8, known

as ETSI 014 (ETSI stands for European Telecommunications Standards Institute and is one of the

European Standards Organizations ς ESO).

ETSI 014 is a communication protocol and data format for a quantum key distribution (QKD) network

to supply highly secured cryptographic keys to any application that uses quantum cryptography. It

provides interoperability between devices from different vendors. The protocol is implemented as a

REST (REpresentational State Transfer) WebAPI. The REST-based WebAPI specifies the format of the

URI calls, the use of communication protocols (HTTPS), and data format for encoding of parameters

and for responses, including cryptographic key material using JSON (JavaScript Object Notation) data

serialization format.

We refer the reader of this report to the specification itselfError! Bookmark not defined. for all details

of the protocol we used, and, for more general information about ETSI Quantum Communication

standard ς to the Industry Specification Group (ISG) on Quantum Key Distribution9.

6 https://www.qnulabs.com/armos-quantum-key-distribution/
7 https://www.idquantique.com/quantum-safe-security/products/clavis3-qkd-platform-rd/
8 https://www.etsi.org/deliver/etsi_gs/QKD/001_099/014/01.01.01_60/gs_qkd014v010101p.pdf
9 https://www.etsi.org/committee/qkd

https://quantumblockchains.io/
https://www.qnulabs.com/armos-quantum-key-distribution/
https://www.idquantique.com/quantum-safe-security/products/clavis3-qkd-platform-rd/
https://www.etsi.org/deliver/etsi_gs/QKD/001_099/014/01.01.01_60/gs_qkd014v010101p.pdf
https://www.etsi.org/committee/qkd

Quantum Blockchains Inc. , Lipowa 4a, 20-027 Lublin, Poland. https://quantumblockchains.io/

To shortly present the protocol let us present the typical sequence of calls we used to communicate

between two blockchain nodes:

STATUS call ς ǳǎŜŘ ǘƻ ŎƘŜŎƪ ǎǘŀǘǳǎ ƻŦ ǘƘŜ ŘŜǾƛŎŜ όғ!ψLtҔ ƛǎ ǘƘŜ Lt ŜƴŘǇƻƛƴǘ ƻŦ ά!ƭƛŎŜέ ƻŦ ǘƘŜ ŜȄŎƘŀƴƎŜΣ

ғ.ψLtҔ ƛǎ ǘƘŜ ŜƴŘǇƻƛƴǘ ƻŦ ǘƘŜ ά.ƻōέ ƻŦ ǘƘŜ ŜȄŎƘŀƴƎŜύ

https://<A_IP>/api/v1/keys/quantumblockchains/status

{

 "Source_KME_ID": "KME1",

 "Target_KME_ID": "KME2",

 "Master_SAE_ID": "qnulabs",

 "Slave_SAE_ID": "quantumblockchains",

 "key_size": 1024,

 "stored_key_count": 12207,

 " Max_key_count": 100,

 "Max_key_per_request": 10,

 "Max_key_size": 1024,

 "Min_key_size": 4,

 "Max_SAE_ID_count": 1

}

KEY encoding ς used to generate a key and to initiate its transmission to the other endpoint over the

quantum channel.

In the ǊŜǎǇƻƴǎŜ ǘƘŜ Ŏŀƭƭ ǊŜǘǳǊƴǎ ǘƘŜ ŎǊȅǇǘƻƎǊŀǇƘƛŎ ƪŜȅ ŦƻǊ ά!ƭƛŎŜέ ŀƴŘ ƛǘǎ ƛŘŜƴǘƛŦƛŎŀǘƛƻƴ όƪŜȅψL5ύ ǘƘŀǘ

ǘƘŜ ƻǘƘŜǊ ŜƴŘ όά.ƻōέύ ǿƛƭƭ ǳǎŜ ǘƻ ǊŜǘǊƛŜǾŜ ǘƘŜ ƪŜȅΦ

https:// <A_IP>/api/v1/keys/quantumblockchains/enc_keys

{

 "keys": [

 {

 "key_ID": " fe13b9bd - c0b8 - 42a5 - 8e15 - d8625b472b3b",

 "key":

"2171a9482574999e6ac898cdd453db13d91de79e71c07fbe027bb2b9cebac2a5186c43ae64

3136939c91b5a6f941955a29072471134992ca8cdaf8b7e283b8256b791e498ea302c3528d4

67cfbad5d0a7df5a0487e03f667974926bbd903208aae5f3 b0359fc1da51f76bb05d36bf435

c5599c268205c282b08a70895d920be166e21d4a28e65ab5d4f6c2ce5edf42caa969430a567

797482b982e011e3be38b6d9fdd2a73ffdf351028f4ff985004b80f8d464e2bf6ec7289839b

12413fa5fc637ec0f2704836ce039a99f891cef61fe771a16e40b83769a676852fb336d9764

5be0 ff026205d018a0d6c87238c3682dc7d930c3bf9894c4d28438ad4e3ea26ed4a3fb345ed

d9cccf240aa7218c7690eb4a6ca6562abd29c46a0dd43645baf0309ef04d1692b51ae0e085e

5e7f0187d0d4200f47a7b681dc05b70f3bd9c91c94cd87beba13eb2076bd968c07149122139

b6e106b515a41c0de9d0c2571c91840a9eb 9af7698a14c3424eb0d51dc5776df9a973b301b1

5405c7b19ae913fefaf81f39976e5e2acda12892c028b73739b1dfeabb63cd95fe8d2bb1d0d

41b64328dcbfa4efa010209dac4a91e0f6bc9ff1a723fb1ae4c2b0873945868a93611346340

1e72cf4d6d20a42a09fa1979db43e592b69971068be996bf6d7b8116f342f6bb02 cc5cf44ba

c24acccc7d98b8b765f0063d6cffa9aeecd2e03fa76ce6d64a"

 }

]

}

https://quantumblockchains.io/

Quantum Blockchains Inc. , Lipowa 4a, 20-027 Lublin, Poland. https://quantumblockchains.io/

KEY decoding ς ǳǎŜŘ ǘƻ ǊŜǘǊƛŜǾŜ ǘƘŜ ƪŜȅ ǎŜƴŘ ōȅ ά!ƭƛŎŜέ ƻƴ ǘƘŜ ƻǘƘŜǊ όά.ƻōέύ ǎƛŘŜ ǳǎƛƴƎ ǘƘŜ ƪŜȅψL5

provided.

https://<B_IP>/api/v1/keys/quantumblockchains/dec_keys?key_ID=fe13b9bd -

c0b8 - 42a5 - 8e15 - d8625b472b3b

{

 "key_ID": "fe13b9bd - c0b8 - 42a5 - 8e15 - d8625b 472b3b",

 "key":

"2171a9482574999e6ac898cdd453db13d91de79e71c07fbe027bb2b9cebac2a5186c43ae64

3136939c91b5a6f941955a29072471134992ca8cdaf8b7e283b8256b791e498ea302c3528d4

67cfbad5d0a7df5a0487e03f667974926bbd903208aae5f3b0359fc1da51f76bb05d36bf435

c5599c26820 5c282b08a70895d920be166e21d4a28e65ab5d4f6c2ce5edf42caa969430a567

797482b982e011e3be38b6d9fdd2a73ffdf351028f4ff985004b80f8d464e2bf6ec7289839b

12413fa5fc637ec0f2704836ce039a99f891cef61fe771a16e40b83769a676852fb336d9764

5be0ff026205d018a0d6c87238c3682dc7d930c3bf 9894c4d28438ad4e3ea26ed4a3fb345ed

d9cccf240aa7218c7690eb4a6ca6562abd29c46a0dd43645baf0309ef04d1692b51ae0e085e

5e7f0187d0d4200f47a7b681dc05b70f3bd9c91c94cd87beba13eb2076bd968c07149122139

b6e106b515a41c0de9d0c2571c91840a9eb9af7698a14c3424eb0d51dc5776df9a973b301 b1

5405c7b19ae913fefaf81f39976e5e2acda12892c028b73739b1dfeabb63cd95fe8d2bb1d0d

41b64328dcbfa4efa010209dac4a91e0f6bc9ff1a723fb1ae4c2b0873945868a93611346340

1e72cf4d6d20a42a09fa1979db43e592b69971068be996bf6d7b8116f342f6bb02cc5cf44ba

c24acccc7d98b8b765f0063d6cffa 9aeecd2e03fa76ce6d64a"

}

The project source code

Source code of QKDBase containing the QKDbase is available in the repository:

https://github.com/quantumblockchains/QKDBase

Use of QRNG in the QKDBase code

QKDBase software calls QRNG (Quantum Random Number Generator) hardware for the generation of

a random array of peers. The quantum device we used for QRNG hardware is ID Quantique Quantis

device10 and the software layer (REST Web API) was developed by our company.

The WebAPI designed by our engineers and available as a product at:

https://www.quantumblockchains.io/current-services/

The QRNG call occurs at the beginning of each voting phase ς method startVoting calls

generateRandomArrayOfNodes which returns a random array of peers.

¶ generateRandomArrayOfNodes :
\ QuantumBlockchains \ peer \ services \ qrng.service.ts

10 https://www.idquantique.com/random-number-generation/products/quantis-qrng-chip/

https://quantumblockchains.io/
https://github.com/quantumblockchains/QKDBase
https://www.quantumblockchains.io/current-services/
https://www.idquantique.com/random-number-generation/products/quantis-qrng-chip/

Quantum Blockchains Inc. , Lipowa 4a, 20-027 Lublin, Poland. https://quantumblockchains.io/

Use of QKD in the QKDBase code

QKDBase software calls QKD service run by the QKD hardware using ETSI compliant webservices.

The QKD calls are used for securing communication between peers while establishing the Toeplitz

matrix and the one-time pad. Before the start of the voting phase, the proposing peer establishes with

each peer a unique Toeplitz matrix and a unique one time pad. The proposing peer calls the method

establishToeplitzMatrixWithQKD which allows for the generation of the Toeplitz matrix from the

ǊŜŎŜƛǾŜŘ vY5 ƪŜȅΦ ¢ƘŜ vY5Ωǎ ƪŜȅ L5 ƛǎ ǘƘŜƴ ǎŜƴǘ ǘƻ ǘƘŜ ƻǘƘŜǊ ǇŜŜǊ ǿƘƛŎƘ Ŏŀƭƭǎ ǘhe method

fetchAndStoreToeplitzMatrix. This method allows her/him to create the same Toeplitz matrix from

the given key identified by the key ID.

The same process is repeated for the one-time pad: proposing peer calls

establishOneTimePadWithQKD to get a one-time pad from QKD key, and sends the key ID to the other

peer. The other peer calls fetchAndStoreQKDKey to receive the same one time pad, as proposing

peer.

Location of the methods in the QKDBase code:

¶ startVoting: \ QuantumBlockchains \ peer \ services \ api.service.ts

¶ establishToeplitzMatrixWithQKD, fetchAndStoreToeplitzMatrix:
\ QuantumBlockchains \ peer \ services \ toeplitzQKD.service.ts

¶ establishOneTimePadWithQKD, fetchAndStoreQKDKey:
\ QuantumBlockchains \ peer \ services \ oneTimePadQKD.service.ts

The deployment of QKDBase

QKDBase was deployed in two modes:

1) Under Docker container mechanism with all nodes running on a single machine

2) Directly on the operating system level with two nodes running on one server and two other

nodes running on the another one.

The typical multiterminal output of the first mode is presented in the following picture:

https://quantumblockchains.io/

Quantum Blockchains Inc. , Lipowa 4a, 20-027 Lublin, Poland. https://quantumblockchains.io/

The output illustrates (the green lines) the generation of keys and their transfer between nodes

using QNU Labs QKD devices.

In the second mode, the first server output of the first two nodes is displayed here:

And the second server output is shown here:

https://quantumblockchains.io/

Quantum Blockchains Inc. , Lipowa 4a, 20-027 Lublin, Poland. https://quantumblockchains.io/

It is clearly visible when the quantum communication over QKD is used.

Results of tests

Executing blockchain transactions

QKDBase was used for tests for about 2 months. In a typical session tens to several thousand of

transactions were performed. To represent some arbitrary data, the body of each transaction

contained a piece of poetry and some random streams of data.

The chains, represented by a sequence of JSON objects were produced:

{"index":1,"previous BlockHash":"eac5cc20452c3814f6ff38a474f86de2dbc008f81d296b353a318e6546dba2

a5","data":"Litwo, Ojczyzno moja! ty jestes jak

zdrowie","timestamp":1649859284261,"hash":"dd234d58eecd0523fe40c67670cbc2516020db679b719549f9b

c449a4c5bcb03"}

{"index":2,"previousBloc kHash":"dd234d58eecd0523fe40c67670cbc2516020db679b719549f9bc449a4c5bcb

03","data":"Litwo, Ojczyzno moja! ty jestes jak

zdrowie","timestamp":1649859403357,"hash":"0a10823be1bedbaca7a35199be762c537c83909c6c5dad025b5

dd52d038de044"}

{"index":3,"previousBlockHas h":"0a10823be1bedbaca7a35199be762c537c83909c6c5dad025b5dd52d038de0

44","data":"Litwo, Ojczyzno moja! ty jestes jak

zdrowie","timestamp":1649859423005,"hash":"5e4bc435aac948f92357533b341a11cd8fc25aa114d81c1d4a4

f976b1fca9127"}

{"index":4,"previousBlockHash":" 5e4bc435aac948f92357533b341a11cd8fc25aa114d81c1d4a4f976b1fca91

27","data":"Litwo, Ojczyzno moja! ty jestes jak

zdrowie","timestamp":1649874291477,"hash":"71c5f02cd5e6befb5a7d606ac9371208f7369b95c8d5774b0b9

a89ecef98ceef"}

https://quantumblockchains.io/

